CONDOMNA SINPLIFIED SEWERAG

Duncan Mara University of Leeds, UK

Indonesia

Bangladesh

Periurban areas: inadequate sanitation Open stormwater drains (if there are any) receive raw wastewater discharges

Simplified sewerage

Rigorous hydraulic design based on:

- a minimum sewer diameter of 100 mm
- a minimum tractive tension (τ_{min}) of 1 N/m²
- a minimum value for peak wastewater flow of 1.5 litres/second

Simplified sewerage

Rigorous hydraulic design based on:

- a minimum sewer diameter of 100 mm
- a minimum tractive tension (τ_{min}) of 1 N/m²
- a minimum value for peak wastewater flow of 1.5 litres/second

This results in a minimum gradient of 1 in 200, and a 100-mm dia. sewer being able to serve 234 households of 5 people with a water consumption of 100 litres per person per day

Simplified sewerage

Rigorous hydraulic design based on:

- a minimum sewer diameter of 100 mm
- a minimum tractive tension (τ_{min}) of 1 N/m²
- a minimum value for peak wastewater flow of 1.5 litres/second

This results in a minimum gradient of 1 in 200, and a 100-mm dia. sewer being able to serve 234 households of 5 people with a water consumption of 100 litres per person per day

"Small flows flow better in small pipes"

* CONDOMINIAL SEWERAGE *

Unplanned Area (retrofit)

Case study: Development of Simplified Sewerage in Brazil

Simplified sewerage was first installed in 'Quadra 90', Natal in 1981

Rocas, Natal, northeast Brazil

'Quadra 90' before simplified sewerage installed

Community meeting

Natal, Northeast Brazil, 1983

Condominial sewerage

Natal, Northeast Brazil, 1983

Condominial sewerage

Comparative costs (1997 US\$) of conventional and condominial sewerage in Parauapebas, Pará, north Brazil

ltem ⁻	Conventional sewerage		Condominial sewerage	
	Total cost	Cost per connection	Total cost	Cost per connection
Excavation	263,000	39	186,000	28
Inspection chambers	181,000	27	85,000	13
Sewers	185,000	28	102,000	15
Total	629,000	94	373,000	56

Source: Melo (2005):

Costs in South Africa, 2002

Sanitation technology	Construction cost (ZAR)
Simplified sewerage	2500-3000
EcoSan toilet	3000-4000
Conventional sewerage	6000-7000

Average exchange rates in 2002: ZAR 1000 = USD 87 = EUR 100 Condominial sewerage: Monthly cost to householder

State of Rio Grande do Norte in northeast Brazil, 2017:

Minimum water tariff for 'social' housing (up to 10 m³ per month – i.e., 67 litres per person per day for a family of 5):

BRL 7.73

35% surcharge for condominial sewerage: BRL 2.71 – 0.3% of minimum wage

Brasília: a very rich area being served with condominial sewerage

Hillside favelas in Rio de Janeiro city, where condominial water supply and sewerage were installed in 1990s (first in Rocinhas)

Health aspects

Condominial and conventional sewerage in Salvador, serving ~1 million people

Health aspects

Condominial and conventional sewerage in Salvador, serving ~1 million people

 Reduction in diarrheal disease in children under 3: 22%, but <u>43%</u> in poor areas served by condominial sewerage

Health aspects

Condominial and conventional sewerage in Salvador, serving ~1 million people

- Reduction in diarrheal disease in children under 3: 22%, but <u>43%</u> in poor areas served by condominial sewerage
- Reduction in ascariasis in children aged 1-4: from 24% to 12%; in trichuriasis, from 18% to 5%; and in giardiasis, from 14% to 5%.

Reasons why simplified sewerage now used widely throughout Brazil

CAERN's success with condominial sewerage in Natal presented at the 1983 ABES Congress, followed by papers in ABES's journal Engenharia Sanitária [ABES: Brazilian Assoc. of Sanitary & Environmental Engineering]

ABES set up a Low-cost Sanitation Committee (1983-86) which produced the 1986 Brazilian Design Manual for Simplified Sewerage

Reasons why, cont'd

- The 1986 revision of the Brazilian National Sewerage Design Code adopted a minimum sewer diameter of 100 mm [before then min. dia. was 150 mm] and a T_{min} of 1 N/m²
- A few very good, very committed and politically well-connected (and young) lowcost sanitation engineers
- Positive interest in condominial sewerage by the World Bank acted within Brazil to give it a 'seal of international approval'

Thank you!

Thank you!

and special thanks to José Carlos Melo who developed condominial sewerage in Brazil.

